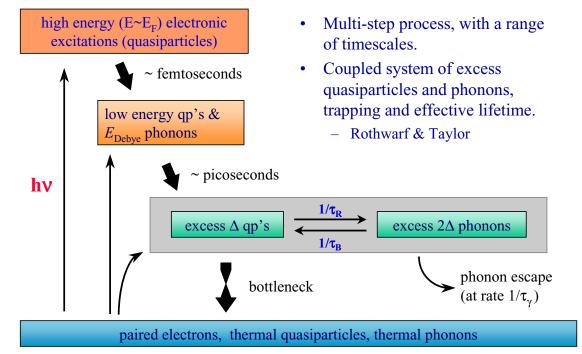


Time-resolved far-IR studies

H. Tashiro,¹ L. LaVeigne,¹ R.P.S.M. Lobo,¹ D.H. Reitze,¹ C.J. Stanton,¹ and G.L. Carr²

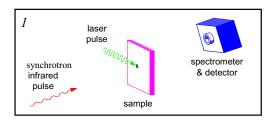
¹ Department of Physics, University of Florida, Gainesville FL
 ² National Synchrotron Light Source, Brookhaven National Laboratory, Upton NY

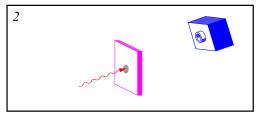
Funded by DOE contracts DE-FG02-02ER45984 at UF, and DE-AC02-98CH10886 at BNL

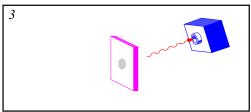

OUTLINE

- Non-equilibrium state and relaxation process in superconductors
- Pump-probe technique
- •MoGe
- Time-dependent relaxation of quasiparticles
- Conclusions

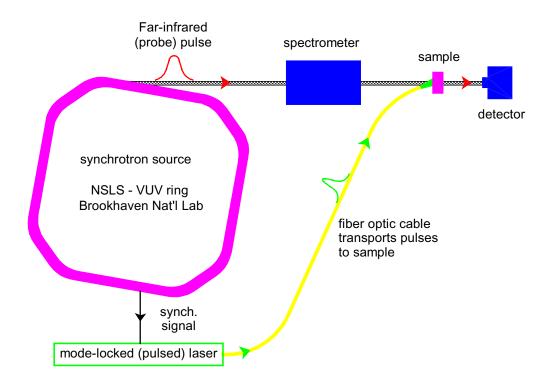
Relaxation processes in superconductors





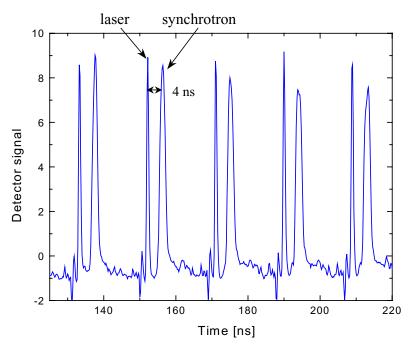


Pump-probe method for time-resolved FIR



- 1. Laser pulse creates photoexcitations in sample, which subsequently evolve with time.
- 2. After time Δt , broadband (continuum) IR pulse arrives and is partially absorbed (or reflected) by excitations.
- 3. IR pulse analyzed with a spectrometer, extracting details of excitations at a time Δt after their creation.
 - Cycle repeats at high (MHz) repetition rate.
 - Photoexcitation evolution determined by measuring at a variety of Δt's.
 - Employs "conventional" spectroscopy using high-sensitivity (slow-response) detectors.

Pump-probe with laser & synchrotron pulses



Pulses at specimen's location

- Synchronized laser & storage ring pulses.
- Measured in sample chamber of U10A spectrometer.
- with Ge APD (near IR detector, ~1 ns response).
 Useful for locating "zero" delay point.
- Here, the delay is 4 ns.

α-MoGe thin films

FILMS:

Grown by RF sputtering

Ge buffer layer

Thickness measured with quartz thickness monitor.

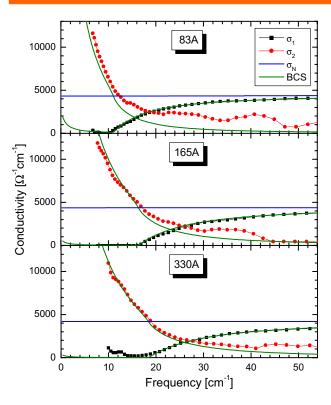
SUBSTRATE:

sapphire (r-cut) 1 mm thick

 $n_{\rm subs} \sim 3.05$

KNOWN:

 T_c bulk is about 7.2 K.


 T_c varies linearly with thickness and $1/R_o$. mean free path is of order 1-3 Angstroms

• A strong reduction of T_c with increasing R_a is attributed to localization and related changes in the Coulomb interaction.

- α-MoGe serves as a model system for studying the interplay between superconductivity and disorder.
 - $\rightarrow R_{\text{\tiny g}}$ is the relevant measure of disorder in 2D.

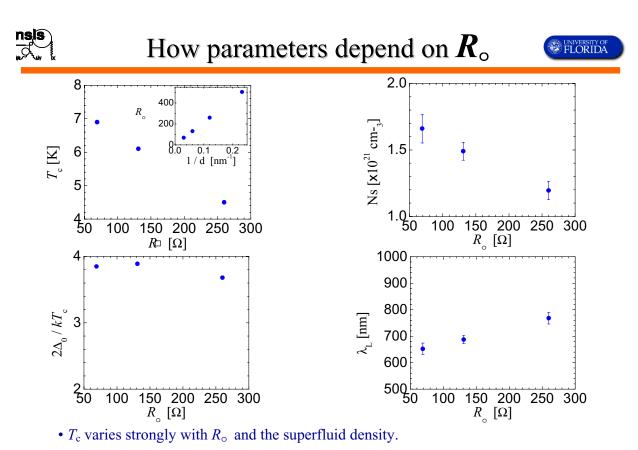
Conductivity of MoGe Films at 2.2K

Conductivity of a thin film on a thick substrate from transmittance and reflectance:

• Algorithm based on the approaches of Palmer and Tinkham and also Glover and Tinkham

R.E. Glover, III and M. Tinkham, *Phys. Rev.* 108, 243(1957) L.H. Palmer and M. Tinkham, Phys. Rev. 165, 588(1968)

- σ_1 fits well to BCS for all three MoGe films.
- σ_2 has correct lineshape, ~1/ ω , but is above BCS, especially at higher frequencies.

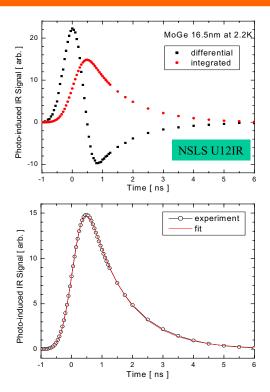

Now define:

Superfluid density:

$$N_s(m/m^*) = mV_c\omega\sigma_2 / e^2$$

London penetration depth:

$$\lambda_{L} = c / [4\pi\omega\sigma_{2}]^{1/2}$$

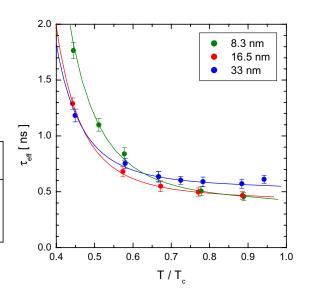


- $2\Delta_0 / kT_c$ does not depend strongly on R_{\circ} .

- ¹ Differential Technique:
 - pump-probe delay "dithered".
 - differential transmittance signal (spectral average) for a range of delay time.
 - time-dependent relaxation of excess quasiparticles by integration.
- ¹ Relaxation Behavior:
 - convolution of simple exponential decay and Gaussian synchrotron pulse.
 - decay time ~ 1 ns.
 - time-resolution determined by synchrotron pulse width (> 300 ps).

$$\Delta T = \frac{1}{2} A \exp \left(\frac{w^2}{4\tau^2} - \frac{t - t_0}{\tau} \right) \left(1 + erf \left(-\frac{w}{\tau} + \frac{t - t_0}{w} \right) \right)$$

Temperature dependence of relaxation time

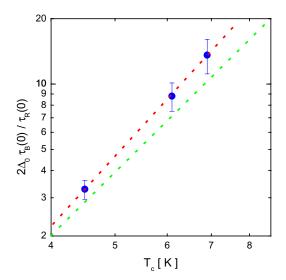

$$\tau_{R}(0) = (1+\lambda)\hbar/2\pi b \left(kT_{c}\right)^{3}$$

$$\tau_{B}(0) = \hbar N_{\Omega} / 4\pi^{2} N(0) \langle \alpha^{2} \rangle_{av} \Delta_{0}$$

$$\tau_{eff} \approx \tau_{\gamma} + (1/2)\tau_{R}(1 + \tau_{\gamma}/\tau_{B})$$

• Relaxation times for MoGe films:

d [nm]	τ _γ [ps]	$ au_{ m R}(0)$ [ps]	$\tau_{_{\mathrm{B}}}(0)$ [ps]	$\tau_{_{\!R}}(0)/\tau_{_{\!B}}(0)$
8.3	420	370	105	3.50
16.5	450	150	79	1.87
33	550	100	75	1.35


Pair-breaking and recombination ratio

• Prediction by the theory (assuming that material parameters are the same for all three films):

$$\frac{2\Delta_0 \tau_B(0)}{\tau_B(0)} \propto T_c^3$$

- Experiment:
 - The ratio $\sim T_c^3$.
 - Support the analysis of Kaplan et al.
 - Possible deviation due to invalid assumptions of the theory (e.g. weak-coupling, constant α^2 , simple Ω^2 dependence of phonon density of states, etc).

Conclusions

- Used pump-probe technique to follow relaxation of nonequilibrium superconducting a-MoGe films
- All three films fit dirty-limit BCS
- Our results are generally consistent with the theory by Kaplan et al.
- The effect of reduced thickness in these samples is to depress T_c and the superfluid density.
- At the same time, the normal-state conductivity and mean free path appear unchanged
- Indeed, it seems that, other than T_c , none of material parameters are changing with thickness.

Needs of a new facility

- Faster FIR pulses 1-10 ps
- Excellent FIR S/N $\sim 10^5$ /rHr (by power or stability or detector)
- Spectral coverage 1-100,000 cm⁻¹
- Modest resolution (0.5 cm⁻¹ at 20 cm⁻¹ is plenty)
- Low T capability: 1.7-300 K
- Range of pump wavelengths (FIR, MIR, NIR, VIS, UV)
- Range of pump fluences (up to ~100 mW)
- Magnet?

(1) Ferromagnetic Semiconductors

- GaN:Mn, (ferromagnetic, Curie temperature > 300K)
- Pump-probe with a pump slightly larger than the GaN:Mn bandgap. (Need ~ 3 to ~ 5 eV)

(2) Quantum confined Laser media

- III-V compounds.
- Carrier relaxation is critical to the lasing medium (determines population inversion)
- Pump at the bandgap, 800-950 nm (Ti:sapphire) or 3-5 m (OPA).
- Use THz as a probe of the carrier relaxation.

(3) Dual phase transitions: Multiferroics-Ferroelectric and Ferromagnetic

- Exhibit coexistence of two phase transitions: ferroelectricity + ether antiferromagnetism or ferromagnetism.
- Example material: BiFe0₃:Tb
- Pump carriers across the bandgap, using variable pump light polarization, and
- Study carrier thermalization and relaxation, in both the ordered and disordered states
- Need pump laser in the photon energy range of 3-5 eV.

(4) Cuprate superconductors

- Measure versus temperature and applied magnetic field,
- Measure transient change from photoexcitation.

(5) Ruthenates: Sr₂RuO₄ and homologous series

- Sr₂RuO₄: T_c of 3 K (special case) or lower; 1.5 K more typical. Need a ³He cooling system.
- Normal state differs qualitatively between Sr₂RuO₄ and SrRuO₃
- Sr,RuO₄ has Fermi Liquid behavior over 1.5-30 K, crossover to non-Fermi liquid characteristics above ~ 25-30K.
- Measure THz absorption versus temperature

(6) Magnetic nanowire arrays

- Make magnetic nanowire arrays (Ni, Fe, Co, alloys) inside of alumina honeycomb arrays
- Wire diameter down to ~ 5 nm to ~ 400 nm; 10-15% of the volume is wires
- Measure the THz absorption as a function of temperature and applied magnetic field
- Transient demagnetization studied by pump/probe (Ti:sapphire)

James Lawler, Wisconsin

- Lighting consumes approximately 25% of all electrical power.
- Discharge sources typically 5 to 10x more efficient than incandescent sources
- High Intensity Discharge (HID) lamps, High Pressure Sodium (HPS) and Metal Halide (MH-HID), are in widespread use today.
- HID lamps operate in local thermodynamic equilibrium
- Total pressures: 1 to over 200 bar,
- Electron densities from 10¹⁵ 10¹⁸ cm⁻³ (Plasma frequencies 0,3-10 THz)
- Diagnostic experiments on HID lamps are extremely challenging.
- Synchrotron radiation has the needed spectral radiance to "outshine" these very intense
 plasmas across broad spectral regions. (Optical and UV absorption at Stoughton / Kshell X-Ray at APS
- Intense Terahertz radiation would be extremely valuable both for electron density measurements and for measuring the opacity of these lamps due to electron-atom inverse bremsstrahlung.
- Lamps are compact and well suited to experiments at remote sites.